Exam Seat No:_____

C.U.SHAH UNIVERSITY Winter Examination-2018

Subject Name: Theories of Ring and Field

Subject Code: 5SC)3TRF1		Branch: M.Sc. (Mathematics)		
Semester: 3	Date:	04/12/2018	Time: 02:30 To 05:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)
-	a.	Define: Ideal.	1
	b.	Define: Euclidean ring.	1
	c.	Write necessary and sufficient condition for the non zero element a of Euclidea	in 1
		ring is a unit.	
	d.	True/False. "Every principal ideal ring is Euclidean ring"	1
	e.	Give an example of division ring which is not field.	1
	f.	Find all subring of Z_{12} .	1
	g.	Is $Z \times Q$ integral domain?	1
Q-2		Attempt all questions	(14)
	a.	Prove that ring of Gaussian integer is a Euclidean ring.	6
	b.	Prove that characteristic of an integral domain is either zero or prime number.	5
	c.	Prove that a field has no proper ideal.	3
		OR	
Q-2		Attempt all questions	(14)
	a.	Every field is a Euclidean ring.	5
	b.	If a is an element of a commutative ring R with unity then prove that the set	5
		$S = \{ra \mid r \in R\}$ is a principal ideal of R generated by a.	
	c.	Prove that every Euclidean ring possesses unity.	4
Q-3		Attempt all questions	(14)
	a.	Prove that every Euclidean ring is a principal ideal ring.	5
	b.	Let R be Euclidean ring. Let a and b be two non-zero elements in R . If b is not	5
		unit in R then prove that $d(b) < d(ab)$.	
	c.	State and prove Gauss lemma.	4
			4 - 6 3

		OR	
Q-3		Attempt all questions	(14)
	a.	Let <i>R</i> be a Euclidean ring. Let $a, b \in R$ not both of which are zero. Then prove	5
		that a and b have a greatest common divisor d which can be express in the form	
		of $d = \lambda a + \mu b$ where $\lambda, \mu \in R$.	
	b.	State and prove unique factorization theorem.	5
	c.	Find all units of Gaussian integer.	4
		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a.	Define: Irreducible polynomial.	1
	b.	Write the definition of Primitive polynomial.	1
	c.	Define: Algebraic element over field.	1
	d.	Define: Simple extension.	1
	e.	Define: Splitting field.	1
	f.	State Remainder theorem for polynomial.	2
Q-5		Attempt all questions	(14)
	a.	State and prove division algorithm for polynomials over field.	5
	b.	State and prove Eisenstein's criterion of Irreducibility.	5
	c.	Let <i>K</i> be an extension field of <i>F</i> . Let $a \in K$ be algebraic over <i>F</i> . Then prove that	4
		any two minimal monic polynomials for <i>a</i> over <i>F</i> are equal.	
		OR	
Q-5		Attempt all questions	(14)
	a.	In usual notation prove that $F[x]$ is a principal ideal ring.	5
	b.	If L is finite extension of K and K is finite extension of F then prove that L is	5
		finite extension of F. Also $[L:F] = [L:K][K:F]$.	
	c.	Let G be a subgroup of the group of all automorphisms of a field K. Then fixed	4
		field of G is a subfield of K .	
Q-6		Attempt all questions	(14)
	a.	Let K be an extension field of a field F. Then prove that $a \in K$ is algebraic over F	6
		if and only if $F(a)$ is a finite extension of F .	
	b.	Prove that a polynomial of degree n over a field can have at most n roots in any	6
		extension field.	
	c.	Find splitting field of $f(x) = x^3 - 2 \in Q[x]$.	2
		OR	
Q-6		Attempt all Questions	(14)
	a.	State and prove fundamental theorem on Galois theory.	6
	b.	Let K be field of complex number and F be a field of real numbers. Then prove	6
		that K is a normal extension of F .	
	c.	Show that the polynomial $x^2 + x + 4$ is irreducible over a field of integers modulo 11.	2

